A research partnership for micro and nano scale fluid flows

This research partnership is training engineers and developing new computational tools in the multiscale fluid dynamics that is needed for emerging technologies that leverage physicochemical effects from the nanoscale to the macroscale.

Examples of multiscale technologies include: controlling nano-bubble cavitation to treat cancer; nano-filtering seawater to make it drinkable for water-stressed populations; and nanostructured coatings to reduce the accretion of ice on sea vessels.

This work represents a revolution in simulation for design across different materials and multiple length and time scales.


The technological applications we are investigating include:

  • ultra-high heat flux cooling using evaporating liquid/vapour interfaces from a nanofluidic hierarchical wick structure
  • inhibition of ice formation, and reduction of ice adhesion, on nanostructured surfaces
  • acoustothermal atomisation of water nanofilms and droplets
  • fast granular/gas flows in pneumatic conveyors and circulating fluidised bed reactors
  • urban pedestrian and traffic dynamics
  • nanotube membranes for ultra-efficient filtration and desalination
  • dense gas flows in geological reservoirs

All these applications have one thing in common: the overall system behaviour depends strongly on the interactions of the individual system components.


We are a research partnership of three institutions in the UK:

  • University of Warwick
  • University of Edinburgh
  • STFC Daresbury Laboratory

We work on technological applications with a number of companies:

  • Akzo Nobel Coatings International BV
  • Nokia Bell Labs, Ireland
  • European Space Agency
  • Jaguar Land Rover
  • TotalSim Ltd
  • Waters Corporation

Follow us @MicroNanoFlows

@MicroNanoFlows RT @MultiscaleMuse: Series 1 Episode 4 is now available to listen to on MixCloud! This time we interview Dr James Sprittles from the Mathem…
@MicroNanoFlows RT @JFluidMech: Join JFM Editor Detlef Lohse today at 7pm (CET) for a special webinar @_knaw: "Corona: from droplets to pandemic - how we c…
@MicroNanoFlows Congrats to Chengxi Zhao who has passed his PhD viva at the @warwickUni on 13th May 2020! His thesis title is: Fluc… twitter.com/i/web/status/1…

Latest updates from Micro & Nano Flows

Cavitation could generate ultraviolet “micro-flashlights” for clean water treatment

We have already discussed in this blog how cavitation bubble collapse can be used to target and destroy cancer cells. On a similar biological theme, I recently found...

Read more

High Performance Computing – Petascale? Exascale?? Zetascale???

Being able to run large computational simulations plays an important role in the work of the Micro & Nano Flows group. Some of the methods we use like Molecular...

Read more

Working from home

It feels like a long time since I was in my office at University. Here are some of the things I miss: Being able to draw things on a white board (even if it’s...

Read more